4.5 Review

Optically and thermally induced molecular switching processes at metal surfaces

Journal

JOURNAL OF PHYSICS-CONDENSED MATTER
Volume 24, Issue 39, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/24/39/394001

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft through the collaborative research centre [Sfb 658]

Ask authors/readers for more resources

Using light to control the switching of functional properties of surface-bound species is an attractive strategy for the development of new technologies with possible applications in molecular electronics and functional surfaces and interfaces. Molecular switches are promising systems for such a route, since they possess the ability to undergo reversible changes between different molecular states and accordingly molecular properties by excitation with light or other external stimuli. In this review, recent experiments on photo- and thermally induced molecular switching processes at noble metal surfaces utilizing two-photon photoemission and surface vibrational spectroscopies are reported. The investigated molecular switches can either undergo a trans-cis isomerization or a ring opening-closure reaction. Two approaches concerning the connection of the switches to the surface are applied: physisorbed switches, i.e. molecules in direct contact with the substrate, and surface-decoupled switches incorporated in self-assembled monolayers. Elementary processes in molecular switches at surfaces, such as excitation mechanisms in photoisomerization and kinetic parameters for thermally driven reactions, which are essential for a microscopic understanding of molecular switching at surfaces, are presented. This in turn is needed for designing an appropriate adsorbate-substrate system with the desired switchable functionality controlled by external stimuli.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available