4.5 Article

Structure, stability and defects of single layer hexagonal BN in comparison to graphene

Journal

JOURNAL OF PHYSICS-CONDENSED MATTER
Volume 25, Issue 4, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/25/4/045009

Keywords

-

Funding

  1. FOM-NWO, the Netherlands

Ask authors/readers for more resources

We study by molecular dynamics the structural properties of single layer hexagonal boron nitride (h-BN) in comparison to graphene. We show that the Tersoff bond order potential developed for BN by Albe et al (1997 Radiat. Eff. Defects Solids 141 85-97) gives a thermally stable hexagonal single layer with a bending constant kappa = 0.54 eV at T = 0. We find that the non-monotonic behaviour of the lattice parameter, the expansion of the interatomic distance and the growth of the bending rigidity with temperature are qualitatively similar to those of graphene. Conversely, the energetics of point defects is extremely different: instead of Stone-Wales defects, the two lowest energy defects in h-BN involve either a broken bond or an out-of-plane displacement of a N atom to form a tetrahedron with three B atoms in the plane. We provide the formation energies and an estimate of the energy barriers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available