4.5 Article Proceedings Paper

Kaleidoscopic morphologies from ABC star-shaped terpolymers

Journal

JOURNAL OF PHYSICS-CONDENSED MATTER
Volume 23, Issue 28, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/23/28/284111

Keywords

-

Funding

  1. Grants-in-Aid for Scientific Research [22540375] Funding Source: KAKEN

Ask authors/readers for more resources

Star-shaped terpolymers of the ABC type composed of incompatible polymer components give a variety of ordered structures with mesoscopic length scales depending on their composition ratio. Their peculiar features are summarized in this report. Polymer components adopted are polyisoprene (I), polystyrene (S) and poly(2-vinylpyridine) (P), and many monodisperse samples of the IXSY P-Z type were anionically prepared. Firstly our focus is on molecules of the I1.0S1.0Px1 type, where x(1) is only a variable. The complex but systematic morphology change was displayed within the range 0.2 <= x(1) <= 10, that is, their structures change from spherical plus lamellae structure for I1.0S1.0P0.2 to periodic tilings (0.4 <= x(1) <= 1.9), then to lamellae-in-lamella (3.0 <= x(1) <= 4.9) and lamellae-in-cylinder (7.9 <= x(1) <= 10) structures with increasing x(1). Here if we pay attention to the structural variation of the P domain inclusively, it transforms from sphere to cylinder, lamella and then to matrix, which is the same as that for linear polymers. Among them, several periodic Archimedean tiling patterns can be naturally formed when the relative lengths of the three chains are close to one another. Moreover, it has been found that the tiling zone is spread out widely. For example, the series I1.0S1.8Px2 (with 0.8 <= x(2) <= 2.9) and the other series I1.0SyP2.0 (with 1.1 <= y <= 2.7) show mostly Archimedean tilings. Additionally, block copolymer/homopolymer blends with a composition of I1.0S2.7P2.5 reveal a quasicrystalline tiling with dodecagonal symmetry. Furthermore, a zinc-blende-type four-branched network structure was created just a little outside of the tiling region for a block copolymer/homopolymer blend of I1.0S2.3P0.8. When some more asymmetry in chain length is introduced, hyperbolic tiling on a gyroid membrane has successfully been constructed for the sample I1.0S1.8P3.2 and it transforms into a hierarchical cylinders-in-lamella structure with further increase in P content to I1.0S1.8P6.4. Thus, kaleidoscopic morphologies have been generated from ABC star-shaped terpolymers and their structural change has turned out to be very sensitive to relative compositions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available