4.5 Article

Effect of manganese doping on the size effect of lead zirconate titanate thin films and the extrinsic nature of 'dead layers'

Journal

JOURNAL OF PHYSICS-CONDENSED MATTER
Volume 22, Issue 5, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/22/5/055901

Keywords

-

Funding

  1. National University of Singapore
  2. MOE AcRF [R284-000-058-112]

Ask authors/readers for more resources

We have investigated the size effect in lead zirconate titanate (PZT) thin films with a range of manganese (Mn) doping concentrations. We found that the dynamic size effect in the conventional Pt/PZT/Pt thin-film capacitors could be systematically reduced and almost completely eliminated by increasing Mn doping concentration. The interfacial layer at the electrode-film interface appears to disappear almost entirely for the PZT films with similar to 2% Mn doping levels, confirmed by the fits using the conventional 'in-series capacitor' model. Our work indicates that the dynamic size effect in ferroelectrics is extrinsic in nature, supporting the work by Saad et al. Other implications of our results have also been discussed. By comparing a variety of experimental studies in the literature we propose a scenario that the 'dead layer' between PZT (or barium strontium titanate, BST) and metal electrodes such as Pt and Au might have a defective pyrochlore/fluorite-like structure (possibly with a small portion of ferroelectric perovskite phase). This scenario is then generalized by including the effect of the grain-boundary dead layer on the collapse of the dielectric constant in thinner films.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available