4.5 Article Proceedings Paper

Time of flight-photoemission electron microscope for ultrahigh spatiotemporal probing of nanoplasmonic optical fields

Journal

JOURNAL OF PHYSICS-CONDENSED MATTER
Volume 21, Issue 31, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/21/31/314005

Keywords

-

Ask authors/readers for more resources

Nanoplasmonic excitations as generated by few-cycle laser pulses on metal nanostructures undergo ultrafast dynamics with timescales as short as a few hundred attoseconds (1 as = 10(-18) s). So far, the spatiotemporal dynamics of optical fields localized on the nanoscale (nanoplasmonic field) have been hidden from direct access in the real space and time domain. An approach which combines photoelectron emission microscopy and attosecond streaking spectroscopy and which provides direct and non-invasive access to the nanoplasmonic field with nanometer-scale spatial resolution and temporal resolution of the order of 100 as has been proposed (Stockman et al 2007 Nat. Photon. 1 539). To implement this approach, a time of flight-photoemission electron microscope (TOF-PEEM) with similar to 25 nm spatial and similar to 50 meV energy resolution, which has the potential to detect a nanoplasmonic field with nanometer spatial and attosecond temporal resolution, has been developed and characterized using a 400 nm/60 ps pulsed diode laser. The first experimental results obtained using this newly developed TOF-PEEM in a two-photon photoemission mode with a polycrystalline Cu sample and an Ag microstructure film show that the yield and the kinetic energy of the emitted photoelectrons are strongly affected by the nanolocalized plasmonic field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available