4.5 Article

A numerical renormalization group approach to non-equilibrium Green functions for quantum impurity models

Journal

JOURNAL OF PHYSICS-CONDENSED MATTER
Volume 20, Issue 19, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/20/19/195216

Keywords

-

Ask authors/readers for more resources

We present a method for the calculation of dynamical correlation functions of quantum impurity systems out of equilibrium using Wilson's numerical renormalization group (NRG). Our formulation is based on a complete basis set of the Wilson chain and embeds the recently derived algorithm for equilibrium spectral functions. Our method fulfils the spectral weight conserving sum-rule exactly by construction. A local Coulomb repulsion U > 0 is switched on at t = 0, and the asymptotic steady-state spectral functions are obtained for various values of U as well as magnetic field strength H and temperature T. These benchmark tests show excellent agreement between the time-evolved and the directly calculated equilibrium NRG spectra for finite U. This method could be used for calculating steady-state non-equilibrium spectral functions at finite bias through interacting nanodevices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available