4.5 Article

Structure and reactivity of a model catalyst alloy under realistic conditions

Journal

JOURNAL OF PHYSICS-CONDENSED MATTER
Volume 20, Issue 18, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/20/18/184018

Keywords

-

Ask authors/readers for more resources

Using a combined experimental and theoretical approach, we show that a thin RhO2 oxide film forms on a Pt25Rh75(100) surface at elevated oxygen pressures and temperatures prior to the bulk oxidation. By the use of in situ surface x-ray diffraction under realistic CO oxidation reaction conditions, we show that the onset of the growth of thin RhO2 oxide film coincides with an increase in CO2 production. During the reaction, the consumed oxide film is continuously re-grown by oxygen in the gas phase. Our theoretical results strongly suggest that the CO adsorbs on the metallic substrate but reacts with the O in the RhO2 oxide film at the border between the RhO2 oxide film and the metallic substrate. This scenario could explain the experimental observations of oxidation reactions on other late transition metal surfaces as well as on their corresponding nanoparticles under realistic conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available