4.4 Article

Systematics of 2+ states in C isotopes from the no-core shell model

Journal

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0954-3899/40/5/055105

Keywords

-

Funding

  1. European Research Council (ERC) [240603]
  2. Swedish Research Council [2007-4078]
  3. Deutsche Forschungsgemeinschaft [SFB 634]
  4. Helmholtz International Center for FAIR (HIC for FAIR)
  5. BMBF [06DA9040I]
  6. Natural Sciences and Engineering Research Council of Canada (NSERC) [401945-2011]
  7. National Research Council Canada
  8. LLNL [DE-AC52-07NA27344]
  9. European Research Council (ERC) [240603] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

We study low-lying states of even carbon isotopes in the range A = 10-20 within the large-scale no-core shell model. Using several accurate nucleon-nucleon (NN) as well as NN plus three-nucleon (NNN) interactions, we calculate excitation energies of the lowest 2(+) state, the electromagnetic B(E2; 2(1)(+) -> 0(1)(+)) transition rates, and the 2(1)(+) quadrupole moments as well as selected electromagnetic transitions among other states. Recent experimental campaigns to measure 2(+)-state lifetimes indicate an interesting evolution of nuclear structure that pose a challenge to reproduce theoretically from first principles. Our calculations do not include any effective charges or other fitting parameters. However, calculated results extrapolated to infinite model spaces are also presented. The model-dependence of those results is discussed. Overall, we find good agreement with the experimentally observed trends, although our extrapolated B(E2; 2(1)(+) -> 0(1)(+)) value for C-16 is lower compared to the most recent measurements. Relative transition strengths from higher excited states are investigated and the influence of NNN forces is discussed. In particular for 16C we find a remarkable sensitivity of the transition rates from higher excited states to the details of the nuclear interactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available