4.4 Article

Universal functions of nuclear proximity potential for Skyrme nucleus-nucleus interaction in a semiclassical approach

Journal

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0954-3899/36/7/075104

Keywords

-

Funding

  1. Department of Science and Technology (DST), Government of India
  2. Alexander von Humboldt Stiftung, Germany

Ask authors/readers for more resources

The universal function of the nuclear proximity potential is obtained for the Skyrme nucleus-nucleus interaction in the semiclassical extended Thomas Fermi (ETF) approach. This is obtained as a sum of the spin-orbit-density-independent and spin-orbit-density-dependent parts of the Hamiltonian density, since the two terms behave differently, the spin-orbit-density-independent part mainly attractive and the spin-orbit-density-dependent part mainly repulsive. The semiclassical expansions of kinetic energy density and spin-orbit density are allowed up to second order, and the two-parameter Fermi density, with its parameters fitted to experiments, is used for the nuclear density. The universal functions or the resulting nuclear proximity potential reproduce the 'exact' Skyrme nucleus-nucleus interaction potential in the semiclassical approach, within less than similar to 1 MeV of difference, both at the maximum attraction and in the surface region. An application of the resulting interaction potential to fusion excitation functions shows clearly that the parameterized universal functions of nuclear proximity potential substitute completely the 'exact' potential in the Skyrme energy density formalism based on the semiclassical ETF method, including also the modifications of interaction barriers at sub-barrier energies in terms of modifying the constants of the universal functions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available