4.6 Article

Size-dependent bending and vibration behaviour of piezoelectric nanobeams due to flexoelectricity

Journal

JOURNAL OF PHYSICS D-APPLIED PHYSICS
Volume 46, Issue 35, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0022-3727/46/35/355502

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Academic Development Fund of UWO

Ask authors/readers for more resources

Flexoelectricity, representing a spontaneous electric polarization induced by a non-uniform strain field (or strain gradient), is believed to become manifest and be responsible for the size-dependent properties of dielectric materials at the nanoscale. In this paper, the influence of the flexoelectric effect on the static bending and free vibration of a simply supported piezoelectric nanobeam is investigated based on the extended linear piezoelectricity theory and the Timoshenko beam model. The governing equations of the piezoelectric nanobeam with non-homogeneous boundary conditions are obtained from Hamilton's principle. Explicit expressions of the beam deflection and resonant frequency are derived to show the size-dependency of the flexoelectric effect. It is found that the flexoelectricity has a significant effect on the deflection of the bending beam and may reverse the deflection direction under certain loading conditions. Simulation results also indicate that the influence of the flexoelectricity on the vibration behaviour of the piezoelectric nanobeam is more prominent for beams with smaller thickness. Thus, it is suggested that possible frequency tuning of piezoelectric nanobeams by adjusting the applied electrical load should incorporate the flexoelectric effect. The current study can be claimed as helpful for qualitatively characterizing the trend of the flexoelectric effect on the mechanical responses of piezoelectric nanobeams.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available