4.6 Article

Damping Tollmien-Schlichting waves in a boundary layer using plasma actuators

Journal

JOURNAL OF PHYSICS D-APPLIED PHYSICS
Volume 46, Issue 48, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0022-3727/46/48/485203

Keywords

-

Funding

  1. University of Florida's Graduate School Fellowship Award

Ask authors/readers for more resources

The response of a zero pressure gradient boundary layer modified by flow-wise oriented momentum injection similar to that of a plasma actuator is calculated using a two-dimensional (bi-global) stability analysis. It is found that the addition of momentum into the boundary layer has a significant impact on Tollmien-Schlichting waves, which may be damped by up to two orders of magnitude. Changes to the exponential growth rate of the perturbations are also measured. These stabilizing effects are largely due to the momentum addition modifying the downstream boundary layer profiles, but localized stabilization effects are also noted. The relative stabilization of the TS wave appears to be a linear function with respect to the ratio of the plasma-induced wall jet velocity under quiescent conditions and the free-stream velocity for lower levels of plasma actuation (i.e. velocity ratios less than 0.1). For higher levels of plasma actuation, the relative stabilization of the TS wave appears to be exponential with respect to the total momentum addition to the boundary layer by the plasma actuator.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available