4.6 Article

A study on threshold voltage stability of low operating voltage organic thin-film transistors

Journal

JOURNAL OF PHYSICS D-APPLIED PHYSICS
Volume 46, Issue 32, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0022-3727/46/32/325104

Keywords

-

Ask authors/readers for more resources

A low operating voltage (<2V) organic field-effect transistor (OFET) using phenylhexyltrichlorosilane (PTS) self-assembled monolayer (SAM) dielectric and copper phthalocyanine (CuPc) as semiconductor with improved mobility (0.035 cm(2) V-1 s(-1)) and threshold voltage stability was demonstrated. This device showed better performance when compared to an OFET with octyltrichlorosilane (OTS-8) SAM dielectric. The improved mobility was attributed to the 2D growth mode of CuPc on PTS SAM because of surface energy matching between the two, whereas CuPc film on OTS-8 showed a 3D growth mode with larger grain boundary density. The higher threshold voltage stability of OFETs on PTS SAM was attributed to the efficient coverage and screening of trap centres at dielectric/semiconductor interface due to stronger intermolecular linking and formation of closely packed surface by the bulky phenyl end groups. Decrease in grain boundaries offered by 2D growth of CuPc for electron and hole trapping was also found to be another reason for improved threshold voltage stability. The results indicated that the nature of the end group of SAM dielectric, surface chemistry of dielectric and initial growth mode of semiconductors are all responsible for improvement in threshold voltage stability and enhanced performance of OFET.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available