4.6 Article

Type I-type II band alignment of a GaAsSb/InAs/GaAs quantum dot heterostructure influenced by dot size and strain-reducing layer composition

Journal

JOURNAL OF PHYSICS D-APPLIED PHYSICS
Volume 46, Issue 9, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0022-3727/46/9/095103

Keywords

-

Funding

  1. CSF Project [P102/10/1201]
  2. scientific program MSMT [LM2011026]

Ask authors/readers for more resources

The aim of this work is to red shift quantum dot (QD) photoluminescence (PL) towards telecommunication wavelengths by engineering the metalorganic vapour phase epitaxy (MOVPE) prepared structure of InAs/GaAs QDs covered by a GaAsSb strain-reducing layer. Our results proved that type I or type II band alignment can be controlled by both GaAsSb composition and QD size. Maintaining type I heterostructure is important for high luminescence efficiency and emission wavelength stability of the QD structure. The simulation of electron structure in InAs QDs covered with a GaAsSb strain-reducing layer as well as experimental results suggest the importance of increasing QD size for obtaining a longer wavelength PL from the type I heterostructure. The PL maximum wavelength 1371 nm was achieved for the MOVPE prepared type I QD structure with 14% of Sb in GaAsSb. This type of structure exhibits seven times higher PL intensity, twice narrower PL peak and 85 meV redshift in comparison with similarly prepared QDs covered by GaAs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available