4.6 Article

Molecular dynamics simulation of severe adhesive wear on a rough aluminum substrate

Journal

JOURNAL OF PHYSICS D-APPLIED PHYSICS
Volume 46, Issue 5, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0022-3727/46/5/055307

Keywords

-

Funding

  1. National Science Foundation [DMR 9619353]

Ask authors/readers for more resources

Severe adhesive wear on a rough aluminum (Al) substrate is simulated by a hard Lennard-Jones asperity impacting an Al-asperity at high speeds using molecular dynamics (MD). Multiple simulations investigate the effects of variations in the inter-asperity bonding, the geometric overlap between two asperities, the relative impact velocity and the starting temperature. The effect of these experimental variables on degree of adhesive wear and the temperature profiles are discussed, and a design of experiments method is used to help interpret the results. The results indicate that increasing the inter-asperity bonding, the geometric overlap and the starting temperature of two asperities will substantially increase the wear rate, while raising the impact velocity slightly decreases the wear rate. It is observed that the deformation mechanism involves local melting and the formation of a liquid like layer in the contact area between two asperities, and the amorphous deformation of the Al-asperity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available