4.6 Article

Energy balance in MIG arcs

Journal

JOURNAL OF PHYSICS D-APPLIED PHYSICS
Volume 46, Issue 22, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0022-3727/46/22/224002

Keywords

-

Funding

  1. German research foundation (DFG) [FU 307/5-1, UH 106/3-1]

Ask authors/readers for more resources

Recent studies of metal inert gas (MIG) processes by spectroscopy and fluid simulations have shown that metal evaporation causes a specific spatial structure of the arc, and among others a minimum of plasma temperature at the arc centre. Changes in the arc structure and in the heat transfer to the material are closely connected with the arc energy balance; its detailed analysis has not been carried out so far under the specific impact of metal vapour. In this paper, magnetohydrodynamic (MHD) simulations of an MIG arc in argon including iron evaporation at the wire tip are considered. The main terms in the energy balance are discussed focusing on a comparison of the arc regions with and without metal vapour. In addition, a simple approach of the energy balance at a cross section of the MIG arc is proposed where all details of the heat transport are neglected. The MHD model and the simplified approach are in good agreement and clearly demonstrate that the specific structure in an MIG arc is mainly caused by the different temperature dependence of the plasma radiation and the electrical conductivity in argon or in argon mixtures with iron vapour.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available