4.6 Article

Static and dynamic magnetic properties and interplay of Dy3+, Gd3+ and Mn3+ spins in orthorhombic DyMnO3 and GdMnO3 nanoparticles

Journal

JOURNAL OF PHYSICS D-APPLIED PHYSICS
Volume 46, Issue 4, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0022-3727/46/4/045301

Keywords

-

Funding

  1. Department of Science and Technology, India (DST) [SR/S5/NM-104/2006]
  2. DST [DST/INT/ISR/P-8/2011]
  3. Council for Scientific and Industrial Research (CSIR) in Physical Sciences
  4. ARMREB, DRDO, India [ARMREB/MAA/2008/104]
  5. Council of Scientific and Industrial Research, India (CSIR)

Ask authors/readers for more resources

Single-phase orthorhombic DyMnO3 and GdMnO3 nanoparticles in the size range 60-70 and 35-45 nm, respectively, were synthesized using a modified hydrothermal method. The magnetic property measurements of DyMnO3 nanocrystals show anomalies around similar to 43K (antiferromagnetic (AFM) coupling between Mn3+ spins) and at 7K in the form of a peak in the zero-field-cooled curve (AFM coupling between Dy3+ spins). Whereas, GdMnO3 undergoes a phase transition at similar to 42K from paramagnetic to an incommensurate-antiferromagnetic phase (ICAFM) followed by a second anomaly at similar to 22 K, which could be associated with the transition from ICAFM into a canted A-type AFM ordering of the Mn3+ spins. This transition is followed by a long-range ordering of the Gd3+ moments at 6K yielding the canting of the Gd3+ spins with a ferromagnetic (FM) component antiparallel to the FM moment of the canted Mn3+ spins. No anomaly near the Neel temperature of the Mn moments for both DyMnO3 and GdMnO3 nanoparticles was observed in ac magnetization which were observed in dc magnetization. The room temperature Raman spectra of DyMnO3 shows two most intense Raman modes at 480 and 609 cm(-1) which can be assigned to an antisymmetric Jahn-Teller stretching mode and a symmetric or breathing stretching mode, respectively, involving Mn-O bond stretching.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available