4.6 Review

Nanoscale transport properties at silicon carbide interfaces

Journal

JOURNAL OF PHYSICS D-APPLIED PHYSICS
Volume 43, Issue 22, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0022-3727/43/22/223001

Keywords

-

Funding

  1. Italian Ministry for Research [RBIP068LNE_001]
  2. European Commission [MRTN-CT-2006-035735]

Ask authors/readers for more resources

Wide bandgap semiconductors promise devices with performances not achievable using silicon technology. Among them, silicon carbide (SiC) is considered the top-notch material for a new generation of power electronic devices, ensuring the improved energy efficiency required in modern society. In spite of the significant progress achieved in the last decade in the material quality, there are still several scientific open issues related to the basic transport properties at SiC interfaces and ion-doped regions that can affect the devices' performances, keeping them still far from their theoretical limits. Hence, significant efforts in fundamental research at the nanoscale have become mandatory to better understand the carrier transport phenomena, both at surfaces and interfaces. In this paper, the most recent experiences on nanoscale transport properties will be addressed, reviewing the relevant key points for the basic devices' building blocks. The selected topics include the major concerns related to the electronic transport at metal/SiC interfaces, to the carrier concentration and mobility in ion-doped regions and to channel mobility in metal/oxide/SiC systems. Some aspects related to interfaces between different SiC polytypes are also presented. All these issues will be discussed considering the current status and the drawbacks of SiC devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available