4.6 Review

Nonthermal plasma synthesis of semiconductor nanocrystals

Journal

JOURNAL OF PHYSICS D-APPLIED PHYSICS
Volume 42, Issue 11, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0022-3727/42/11/113001

Keywords

-

Funding

  1. National Science Foundation [CBET-0500332, CBET-0756326, DMR-0819885]
  2. Directorate For Engineering
  3. Div Of Chem, Bioeng, Env, & Transp Sys [0756326] Funding Source: National Science Foundation

Ask authors/readers for more resources

Semiconductor nanocrystals have attracted considerable interest for a wide range of applications including light-emitting devices and displays, photovoltaic cells, nanoelectronic circuit elements, thermoelectric energy generation and luminescent markers in biomedicine. A particular advantage of semiconductor nanocrystals compared with bulk materials rests in their size-tunable optical, mechanical and thermal properties. While nanocrystals of ionically bonded semiconductors can conveniently be synthesized with liquid phase chemistry, covalently bonded semiconductors require higher synthesis temperatures. Over the past decade, nonthermal plasmas have emerged as capable synthetic approaches for the covalently bonded semiconductor nanocrystals. Among the main advantages of nanocrystal synthesis in plasmas is the unipolar electrical charging of nanocrystals that helps avoid or reduce particle agglomeration and the selective heating of nanoparticles immersed in low-pressure plasmas. This paper discusses the important fundamental mechanisms of nanocrystal formation in plasmas, reviews the range of synthesis approaches reported in the literature and discusses some of the potential applications of plasma-synthesized semiconductor nanocrystals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available