4.6 Article

High repetition rate femtosecond laser forming sub-10 μm diameter interconnection vias

Journal

JOURNAL OF PHYSICS D-APPLIED PHYSICS
Volume 42, Issue 6, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0022-3727/42/6/065102

Keywords

-

Ask authors/readers for more resources

Laser ablative microvia formation has been widely accepted as an effective manufacturing method for interconnect via formation. Current conventional nanosecond laser microvia formation has reached its limit in terms of minimum via diameter and machining quality. Femtosecond laser has been investigated intensively for its superior machining quality and capability of producing much smaller features. However, the traditional femtosecond laser has very low power and is thus unable to meet the throughput requirement. In this paper we report ablative microvia formation using femtosecond lasers at megahertz repetition rates. Laser ablation was demonstrated for the first time for sub-10 mu m interconnection via drilling at a throughput of 10 000 vias per second. A systematic study of the influence of a high repetition rate in femtosecond laser micromachining of silicon was carried out. The experiments were performed using an Yb-doped fibre amplified/oscillator laser with 1030 nm wavelength in an air environment. The effects of a high repetition rate on microvia formation were observed at similar to 300 fs for silicon substrates. Laser parameters along with threshold energy, via diameter, ablation depth, ablation rate and via quality were studied in detail to accentuate the need of femtosecond lasers for forming sub-10 mu m diameter microvias. The experimental results show that femtosecond laser pulses with high repetition rates show unequivocally the advantages of short-pulse laser ablation for high-precision applications in micrometre-scale dimensions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available