4.8 Article

Interactions and Stress Relaxation in Monolayers of Soft Nanoparticles at Fluid-Fluid Interfaces

Journal

PHYSICAL REVIEW LETTERS
Volume 114, Issue 10, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.114.108301

Keywords

-

Ask authors/readers for more resources

Nanoparticles with grafted layers of ligand molecules behave as soft colloids when they adsorb at fluid-fluid interfaces. The ligand brush can deform and reconfigure, adopting a lens-shaped configuration at the interface. This behavior strongly affects the interactions between soft nanoparticles at fluid-fluid interfaces, which have proven challenging to probe experimentally. We measure the surface pressure for a stable 2D interfacial suspension of nanoparticles grafted with ligands, and extract the interaction potential from these data by comparison to Brownian dynamics simulations. A soft repulsive potential with an exponential form accurately reproduces the measured surface pressure data. A more realistic interaction potential model is also fitted to the data to provide insights into the ligand configuration at the interface. The stress of the 2D interfacial suspension upon step compression exhibits a single relaxation time scale, which is also attributable to ligand reconfiguration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available