4.6 Review

Nuclear magnetic resonance studies of materials for spintronic applications

Journal

JOURNAL OF PHYSICS D-APPLIED PHYSICS
Volume 41, Issue 17, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0022-3727/41/17/173002

Keywords

-

Funding

  1. DFG [WU 595/1-1]

Ask authors/readers for more resources

Since its discovery in liquids and also in solid matter in 1946, nuclear magnetic resonance (NMR) has been widely established as a standard tool for structural analysis of a wide range of materials. This review outlines recent NMR studies on materials considered to be useful in spintronic applications. Spintronics is a new research field which combines the use of both the charge and the spin of an electron as information carriers, which promises distinct advantages over conventional electronics which makes use only of the charge of electrons. A successful application of materials in spintronic devices requires a detailed knowledge of the interplay between the structure and the magnetic and electronic properties on an atomic scale. NMR probes the local environments of the active nuclei. This local character of NMR arises from local contributions to the hyperfine field, namely, the transferred field which depends on the nearest neighbour atoms and their magnetic moments. This enables NMR to study the structural properties of bulk samples as well as of thin films of spin polarized materials. Moreover, NMR spectroscopy also provides an indirect tool to measure the density of states of spin polarized materials via a measurement of the temperature dependence of the spin-lattice relaxation time. This review starts with an introduction into the basic concepts of NMR followed by a description of the important aspects of a pulsed NMR experiment. Thereafter, information obtained by an NMR experiment is addressed. In the subsequent main part, selected recent NMR studies (published roughly after the year 2000) of materials for spintronic applications are presented including NMR studies of, for example, Co thin films, Heusler compounds, double perovskites and pyrites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available