4.5 Article

First-principles study of bonding, elasticity-relevant and acoustic properties of BaAlBO3F2

Journal

JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS
Volume 73, Issue 1, Pages 109-114

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jpcs.2011.10.022

Keywords

Inorganic compounds; Ab initio calculations; Elastic properties; Acoustic properties

Ask authors/readers for more resources

The band structure, density of states, charge densities, and elasticity-relevant properties of BaAlBO3F2 are obtained by first-principles density functional calculations within the generalized gradient approximation. Other elasticity-relevant constants, such as the the Young's modulus. Poisson ratio, velocity of acoustic waves, and the Debye temperature are also deduced from the elastic constants. Bonding analysis demonstrates that BaAlBO3F2 has different bonding properties between basal (ab) plane and c axis. The analyses on elasticity-relevant properties indicate BaAlBO3F2 is mechanically stable and anisotropic. It is also shown that BABF is an ionic crystal with brittle character. Our these results give a reasonable explanation for the experimental finding that BaAlBO3F2 is apt to crack along c axis. Proceeding from Christoffel equation, we discuss the propagation properties of acoustic modes in BaAlBO3F2 to give a theoretical guidance for measuring its elastic constants. Research shows that the calculated average velocities of longitudinal and transverse modes from Christoffel equation are in good agreement with those from classic Debye model. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available