4.5 Article

Synthesis and characterisation of Gd-doped BaTiO3 thin films prepared by laser ablation for optoelectronic applications

Journal

JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS
Volume 70, Issue 10, Pages 1322-1329

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jpcs.2009.06.022

Keywords

Thin films; Ceramics; Oxides; Optical properties; Dielectric properties

Ask authors/readers for more resources

The results of gadolinium (Gd)-doped barium titanate (BaTiO3) thin films prepared by laser ablation on glass and silicon substrates are reported. Rutherford backscattering (RBS) analyses carried out on glass samples indicated the substitution of barium (Ba) by gadolinium (Gd) after annealing, leading to a film with composition Ba0.76TiGd0.01O2.5. There is a reduction in the thickness from 2.21 to 2.02 microns for as-deposited and annealed films. The films on silicon showed a higher degree of crystallinity compared to that of glass substrates due to increased annealing temperature. The average grain size calculated using the X-ray diffraction (XRD) pattern from silicon substrates was 30 nm. The film has a tetragonal structure with a c/a ratio of 1.03 signifying that the incorporation of Gd in BaTiO3 led to the elongation of the c-axis. The percentage transmittance reduced from 80 to 50% due to annealing and this is probably due to structural changes in the film. Swanepoel envelope method employed on the interference fringes of the transmittance pattern led to the determination of the variation of the refractive index with wavelength. Sellmier single oscillator model was applied to determine the optical constants of the films on glass substrates. Bandgap analyses carried out showed the reduction in bandgap with annealing and also the possibility that Gd incorporation has modified the film chemistry leading to the existence of direct (4.35 eV) and indirect (3.88 eV) allowed transitions in the annealed films. Dielectric property measurement carried out under ambient conditions gave a relaxation time tau of 1.6 x 10(-4) s and conduction by small polaron with the onset of polaron conduction set at about 7 kHz. It is conjectured that these properties, especially the high refractive index and the high bandgaps, can make Gd-doped BaTiO3 a good candidate for optoelectronic applications. (C) 2009 Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available