4.6 Article

Mapping between dissipative and Hamiltonian systems

Journal

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1751-8113/43/37/375003

Keywords

-

Ask authors/readers for more resources

Theoretical studies of nonequilibrium systems are complicated by the lack of a general framework. In this work we first show that a transformation recently introduced by Ao (2004 J. Phys. A: Math. Gen. 37 L25) is related to previous works of Graham (1977 Z. Phys. B 26 397) and Eyink et al (1996 J. Stat. Phys. 83 385), which can also be viewed as the generalized application of the Helmholtz theorem in vector calculus. We then show that systems described by ordinary stochastic differential equations with white noise can be mapped to thermostated Hamiltonian systems. A steady-state of a dissipative system corresponds to the equilibrium state of the corresponding Hamiltonian system. These results provide a solid theoretical ground for corresponding studies on nonequilibrium dynamics, especially on nonequilibrium steady state. Mapping permits the application of established techniques and results for Hamiltonian systems to dissipative non-Hamiltonian systems, those for thermodynamic equilibrium states to nonequilibrium steady states. We discuss several implications of this work.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available