4.8 Article

Incompressible Polaritons in a Flat Band

Journal

PHYSICAL REVIEW LETTERS
Volume 115, Issue 14, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.115.143601

Keywords

-

Funding

  1. Swiss NSF
  2. NCCR QSIT

Ask authors/readers for more resources

We study the interplay of geometric frustration and interactions in a nonequilibrium photonic lattice system exhibiting a polariton flat band as described by a variant of the Jaynes-Cummings-Hubbard model. We show how to engineer strong photonic correlations in such a driven, dissipative system by quenching the kinetic energy through frustration. This produces an incompressible state of photons characterized by short-ranged crystalline order with period doubling. The latter manifests itself in strong spatial correlations, i.e., on-site and nearest-neighbor antibunching combined with extended density-wave oscillations at larger distances. We propose a state-of-the-art circuit QED realization of our system, which is tunable in situ.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available