4.8 Article

Thermocapillary Phenomena and Performance Limitations of a Wickless Heat Pipe in Microgravity

Journal

PHYSICAL REVIEW LETTERS
Volume 114, Issue 14, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.114.146105

Keywords

-

Funding

  1. National Aeronautics and Space Administration [NNX09AL98G, NNX13AQ78G]

Ask authors/readers for more resources

A counterintuitive, thermocapillary-induced limit to heat-pipe performance was observed that is not predicted by current thermal-fluid models. Heat pipes operate under a number of physical constraints including the capillary, boiling, sonic, and entrainment limits that fundamentally affect their performance. Temperature gradients near the heated end may be high enough to generate significant Marangoni forces that oppose the return flow of liquid from the cold end. These forces are believed to exacerbate dry out conditions and force the capillary limit to be reached prematurely. Using a combination of image and thermal data from experiments conducted on the International Space Station with a transparent heat pipe, we show that in the presence of significant Marangoni forces, dry out is not the initial mechanism limiting performance, but that the physical cause is exactly the opposite behavior: flooding of the hot end with liquid. The observed effect is a consequence of the competition between capillary and Marangoni-induced forces. The temperature signature of flooding is virtually identical to dry out, making diagnosis difficult without direct visual observation of the vapor-liquid interface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available