4.2 Review

Dispersion interactions in density-functional theory

Journal

JOURNAL OF PHYSICAL ORGANIC CHEMISTRY
Volume 22, Issue 12, Pages 1127-1135

Publisher

WILEY
DOI: 10.1002/poc.1606

Keywords

density-functional theory; dispersion interactions

Funding

  1. Program for Energy Research and Development (PERD)
  2. National Science and Engineering Research Council

Ask authors/readers for more resources

Density-functional theory (DFT) allows for the calculation of many chemical properties with relative ease, thus making it extremely useful for the physical organic chemistry community to understand and focus on various experiments. However, density-functional techniques have their limitations, including the ability to satisfactorily describe dispersion interactions. Given the ubiquitous nature of dispersion in chemical and biological systems, this is not a trivial matter. Recent advances in the development of DFT methods can treat dispersion. These include dispersion-corrected DFT (using explicit, attractive dispersion terms), parameterized functionals, and dispersion-correcting potentials, all of which can dramatically improve performance for dispersion-bound species. In this perspective, we highlight the achievements made in modeling dispersion using DFT. We hope that this will provide valuable insight to both computational chemists and experimentalists, who aim to study physical processes driven by dispersion interactions. Copyright (C) 2009 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available