4.6 Article

Langmuir-Submesoscale Interactions: Descriptive Analysis of Multiscale Frontal Spindown Simulations

Journal

JOURNAL OF PHYSICAL OCEANOGRAPHY
Volume 44, Issue 9, Pages 2249-2272

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/JPO-D-13-0139.1

Keywords

-

Categories

Funding

  1. National Science Foundation (NSF) [OCE/DMS-0934737, OCE-128907, OCE-128995]
  2. National Aeronautics and Space Administration (NASA) [ROSES-NNX09AF38G]
  3. University Corporation for Atmospheric Research Computation and Information Systems Lab (CISL)
  4. NSF Extreme Science and Engineering Discovery Environment (XSEDE)
  5. Front Range Computing Consortium (FRCC)
  6. National Institute for Computational Sciences (NICS)
  7. NSF [CNS-0821794]
  8. University of Colorado Boulder
  9. Division Of Ocean Sciences
  10. Directorate For Geosciences [1258907, 0934737, 1258995] Funding Source: National Science Foundation

Ask authors/readers for more resources

The interactions between boundary layer turbulence, including Langmuir turbulence, and submesoscale processes in the oceanic mixed layer are described using large-eddy simulations of the spindown of a temperature front in the presence of submesoscale eddies, winds, and waves. The simulations solve the surface-wave-averaged Boussinesq equations with Stokes drift wave forcing at a resolution that is sufficiently fine to capture small-scale Langmuir turbulence. A simulation without Stokes drift forcing is also performed for comparison. Spatial and spectral properties of temperature, velocity, and vorticity fields are described, and these fields are scale decomposed in order to examine multiscale fluxes of momentum and buoyancy. Buoyancy flux results indicate that Langmuir turbulence counters the restratifying effects of submesoscale eddies, leading to small-scale vertical transport and mixing that is 4 times greater than in the simulations without Stokes drift forcing. The observed fluxes are also shown to be in good agreement with results from an asymptotic analysis of the surface-wave-averaged, or Craik-Leibovich, equations. Regions of potential instability in the flow are identified using Richardson and Rossby numbers, and it is found that mixed gravitational/symmetric instabilities are nearly twice as prevalent when Langmuir turbulence is present, in contrast to simulations without Stokes drift forcing, which are dominated by symmetric instabilities. Mixed layer depth calculations based on potential vorticity and temperature show that the mixed layer is up to 2 times deeper in the presence of Langmuir turbulence. Differences between measures of the mixed layer depth based on potential vorticity and temperature are smaller in the simulations with Stokes drift forcing, indicating a reduced incidence of symmetric instabilities in the presence of Langmuir turbulence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available