4.6 Article

The Wavy Ekman Layer: Langmuir Circulations, Breaking Waves, and Reynolds Stress

Journal

JOURNAL OF PHYSICAL OCEANOGRAPHY
Volume 42, Issue 11, Pages 1793-1816

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/JPO-D-12-07.1

Keywords

-

Categories

Funding

  1. National Science Foundation [DMS-785 0723757]
  2. Office of Naval Research [N00014-08-1-0597]

Ask authors/readers for more resources

Large-eddy simulations are made for the canonical Ekman layer problem of a steady wind above a uniformly rotating, constant-density ocean. The focus is on the influence of surface gravity waves: namely, the wave-averaged Stokes-Coriolis and Stokes-vortex forces and parameterized wave breaking for momentum and energy injection. The wave effects are substantial: the boundary layer is deeper, the turbulence is stronger, and eddy momentum flux is dominated by breakers and Langmuir circulations with a vertical structure inconsistent with both the conventional logarithmic layer and eddy viscosity relations. The surface particle mean drift is dominated by Stokes velocity with Langmuir circulations playing a minor role. Implications are assessed for parameterization of the mean velocity profile in the Ekman layer with wave effects by exploring several parameterization ideas. The authors find that the K-profile parameterization (KPP) eddy viscosity is skillful for the interior of the Ekman layer with wave-enhanced magnitude and depth scales. Furthermore, this parameterization form is also apt in the breaker and Stokes layers near the surface when it is expressed as a Lagrangian eddy viscosity (i.e., turbulent Reynolds stress proportional to vertical shear of the Lagrangian mean flow, inclusive of Stokes drift) with a derived eddy-viscosity shape and with a diagnosed vertical profile of a misalignment angle between Reynolds stress and Lagrangian mean shear.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available