4.6 Article

On Sea Surface Salinity Skin Effect Induced by Evaporation and Implications for Remote Sensing of Ocean Salinity

Journal

JOURNAL OF PHYSICAL OCEANOGRAPHY
Volume 40, Issue 1, Pages 85-102

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/2009JPO4168.1

Keywords

-

Categories

Funding

  1. National Aeronautics and Space Administration [NNX07AF97G]
  2. NOAA/Office of Climate Observation (OCO)

Ask authors/readers for more resources

The existence of a cool and salty sea surface skin under evaporation was first proposed by Saunders in 1967, but few efforts have since been made to perceive the salt component of the skin layer. With two salinity missions scheduled to launch in the coming years, this study attempted to revisit the Saunders concept and to utilize presently available air-sea forcing datasets to analyze, understand, and interpret the effect of the salty skin and its implication for remote sensing of ocean salinity. Similar to surface cooling, the skin salinification would occur primarily at low and midlatitudes in regions that are characterized by low winds or high evaporation. On average, the skin is saltier than the interior water by 0.05-0.15 psu and cooler by 0.2 degrees-0.5 degrees C. The cooler and saltier skin at the top is always statically unstable, and the tendency to overturn is controlled by cooling. Once the skin layer overturns, the time to reestablish the full increase of skin salinity was reported to be on the order of 15 min, which is approximately 90 times slower than that for skin temperature. Because the radiation received from a footprint is averaged over an area to give a single pixel value, the slow recovery by the salt diffusion process might cause a slight reduction in area-averaged skin salinity and thus obscure the salty skin effect on radiometer retrievals. In the presence of many geophysical error sources in remote sensing of ocean salinity, the salt enrichment at the surface skin does not appear to be a concern.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available