4.8 Article

Thermally Activated Exciton Dissociation and Recombination Control the Carrier Dynamics in Organometal Halide Perovskite

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 5, Issue 13, Pages 2189-2194

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jz500858a

Keywords

-

Funding

  1. European Research Council [226136-VISCHEM]
  2. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]
  3. 11-BM [APS]

Ask authors/readers for more resources

Solar cells based on organometal halide perovskites have seen rapidly increasing efficiencies, now exceeding 15%. Despite this progress, there is still limited knowledge on the fundamental photophysics. Here we use microwave photoconductance and photoluminescence measurements to investigate the temperature dependence of the carrier generation, mobility, and recombination in (CH3NH3)PbI3. At temperatures maintaining the tetragonal crystal phase of the perovskite, we find an exciton binding energy of about 32 meV, leading to a temperature-dependent yield of highly mobile (6.2 cm(2)/(V s) at 300 K) charge carriers. At higher laser intensities, second-order recombination with a rate constant of gamma = 13 x 10(-10) cm(3) s(-1) becomes apparent. Reducing the temperature results in increasing charge carrier mobilities following a T-1.6 dependence, which we attribute to a reduction in phonon scattering (Sigma mu = 16 cm(2)/(V s) at 165 K). Despite the fact that Sigma mu increases, gamma diminishes with a factor six, implying that charge recombination in (CH3NH3)PbI3 is temperature activated. The results underline the importance of the perovskite crystal structure, the exciton binding energy, and the activation energy for recombination as key factors in optimizing new perovskite materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available