4.8 Article

Electrochemical Synthesis of Spinel Type ZnCo2O4 Electrodes for Use as Oxygen Evolution Reaction Catalysts

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 5, Issue 13, Pages 2370-2374

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jz501077u

Keywords

-

Funding

  1. Center for Chemical Innovation of the National Science Foundation (POWERING THE PLANET) [CHE-1305124]

Ask authors/readers for more resources

A new electrochemical synthesis route was developed to prepare spinel-type ZnCo2O4 and Co3O4 as high quality thin film-type electrodes for use as electrocatalysts for oxygen evolution reaction (OER). Whereas Co3O4 contains Co2+ in the tetrahedral sites and Co3+ in the octahedral sites in the spinel structure, ZnCo2O4 contains only Co3+ in the octahedral sites; Co in the tetrahedral sites is replaced by Zn2+. Therefore, by comparing the catalytic properties of ZnCo2O4 and Co3O4 electrodes prepared with comparable surface morphologies and thicknesses, it was possible to examine whether Co2+ in Co3O4 is catalytically active for OER. The electrocatalytic properties of ZnCo2O4 and Co3O4 for OER in both 1 M KOH (pH 13.8) and 0.1 M phosphate buffer (pH 7) solutions were investigated and compared. The results suggest that the Co2+ in Co3O4 is not catalytically critical for OER and ZnCo2O4 can be a more economical and environmentally benign replacement for Co3O4 as an OER catalyst.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available