4.8 Article

The Origin of Slow Carrier Transport in BiVO4 Thin Film Photoanodes: A Time-Resolved Microwave Conductivity Study

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 4, Issue 16, Pages 2752-2757

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jz4013257

Keywords

-

Funding

  1. European Commission's Framework Project 7 (NanoPEC) [227179]

Ask authors/readers for more resources

We unravel for the first time the origin of the poor carrier transport properties of BiVO4, a promising metal oxide photoanode for solar water splitting. Time-resolved microwave conductivity (TRMC) measurements reveal an (extrapolated) carrier mobility of similar to 4 x 10(-2) cm(2) V-1 s(-1) for undoped BiVO4 under similar to 4 sun illumination conditions, which is unusually low for a photoanode material. The poor carrier mobility is compensated by an unexpectedly long carrier lifetime of 40 ns. This translates to a relatively long diffusion length of 70 nm, consistent with the high quantum efficiencies reported for BiVO4 photoanodes. Tungsten (W) doping is found to strongly decrease the carrier mobility by introducing intermediate-depth donor defects as carrier traps. At the same time, the increased carrier density improves the overall photoresponse, which confirms that bulk electronic conductivity is one of the main performance bottlenecks for BiVO4.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available