4.8 Article

Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 3, Issue 8, Pages 997-1001

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jz300243r

Keywords

-

Funding

  1. Department of Energy, Basic Energy Sciences through the SUNCAT Center for Interface Science and Catalysis
  2. UTRC fellowship

Ask authors/readers for more resources

We use XPS and isotope labeling coupled with differential electrochemical mass spectrometry (DEMS) to show that small amounts of carbonates formed during discharge and charge of Li-O-2 cells in ether electrolytes originate from reaction of Li2O2 (or LiO2) both with the electrolyte and with the C cathode. Reaction with the cathode forms approximately a monolayer of Li2CO3 at the C-Li2O2 interface, while reaction with the electrolyte forms approximately a monolayer of carbonate at the Li2O2 electrolyte interface during charge. A simple electrochemical model suggests that the carbonate at the electrolyte-Li2O2 interface is responsible for the large potential increase during charging (and hence indirectly for the poor rechargeability). A theoretical charge-transport model suggests that the carbonate layer at the C-Li2O2 interface causes a 10-100 fold decrease in the exchange current density. These twin interfacial carbonate problems are likely general and will ultimately have to be overcome to produce a highly rechargeable Li-air battery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available