4.8 Article

Photoactivatable Synthetic Dyes for Fluorescence Imaging at the Nanoscale

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 3, Issue 17, Pages 2379-2385

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jz301021e

Keywords

-

Funding

  1. National Science Foundation [CHE-0237578, CHE-0749840, CHE4049860]
  2. Division Of Chemistry
  3. Direct For Mathematical & Physical Scien [1049860] Funding Source: National Science Foundation

Ask authors/readers for more resources

The transition from conventional to photoactivatable fluorophores can bring the resolution of fluorescence images from the micrometer to the nanometer level. Indeed, fluorescence photoactivation can overcome the limitations that diffraction imposes on the resolution of optical microscopes. Specifically, distinct fluorophores positioned within the same subdiffraction volume can be resolved only if their emissions are activated independently at different intervals of time. Under these conditions, the sequential localization of multiple probes permits the reconstruction of images with a spatial resolution that is otherwise impossible to achieve with conventional fluorophores. The irreversible photolysis of protecting groups or the reversible transformations of photochromic compounds can be employed to control the emission of appropriate fluorescent chromophores and allow the implementation of these ingenious operating principles for superresolution imaging. Such molecular constructs enable the spatiotemporal control that is required to avoid diffraction and can become invaluable analytical tools for the optical visualization of biological specimens and nanostructured materials with unprecedented resolution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available