4.8 Article

Contribution of Femtosecond Laser Spectroscopy to the Development of Advanced Optoelectronic Nanomaterials

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 3, Issue 14, Pages 1921-1927

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jz300299r

Keywords

-

Ask authors/readers for more resources

Femtosecond laser spectroscopy has now been a powerful technique for over a decade to investigate charge carrier dynamics in nanoscale optoelectronic systems with a temporal resolution of 100 fs (10(-13) s) or better. Both transient absorption and time-resolved photoluminescence spectroscopy are now popular spectroscopic techniques, which are well-established and provide direct insight into the charge carrier dynamics of nanomaterials. In this Perspective, we focus mainly on the developments with regard to studies of semiconductor nanostructures. Controlling the charge carrier dynamics, including hot carrier relaxation, trapping, interfacial carrier transfer, carrier multiplication, and recombination, is essential for successful energy conversion or photocatalysis, to name two major optoelectronic applications. We will show how femtosecond laser spectroscopy evolved into techniques that unveil the dynamic charge carrier properties of semiconductor nanomaterials toward heterostructures and complex nanoarchitectures and that femtosecond time-resolved laser spectroscopy can shine light on the path to novel optoelectronic structures and emergent optoelectronic technologies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available