4.8 Article

A (Nearly) Universally Applicable Method for Modeling Noncovalent Interactions Using B3LYP

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 3, Issue 13, Pages 1738-1744

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jz300554y

Keywords

-

Funding

  1. Centre for Oil Sands Innovation, based at the University of Alberta

Ask authors/readers for more resources

B3LYP is the most widely used density-functional theory (DFT) approach because it is capable of accurately predicting molecular structures and other properties. However, B3LYP is not able to reliably model systems in which noncovalent interactions are important Here we present a method that corrects this deficiency in B3LYP by using dispersion-correcting potentials (DCPs). DCPs are utilized by simple modifications to input files and can be used in any computational package that can read effective core potentials. Therefore, the technique requires no programming. DCPs (developed for H, C, N, and O) produce the best results when used in conjunction with 6-31+G(2d,2p) basis sets. The B3LYP-DCP approach was tested on the S66, S22, and HSG-A benchmark sets of noncovalently interacting dimers and trimers and was found to, on average, significantly outperform almost all other DFT-based methods that were designed to treat van der Waals interactions. Users of B3LYP who wish to model systems in which noncovalent interactions (viz., steric repulsion, hydrogen bonding, pi-stacking) are present, should consider B3LYP-DCP.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available