4.8 Article

Temperature-Dependent Optical Absorption Properties of Monolayer-Protected Au25 and Au38 Clusters

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 2, Issue 21, Pages 2752-2758

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jz2012897

Keywords

-

Funding

  1. U.S Army [W911QY-07-1-0003, W911NF-09-C-0135]
  2. AFOSR [FA9550-11-1-9999 (FA9550-11-1-0147)]
  3. Western Michigan University

Ask authors/readers for more resources

The temperature dependence of electronic absorption is reported for quantum-sized monolayer-protected gold clusters (MPCs). The investigations were carried out on Au25L18 (L = SC6H13) and Au38L24 (L = SC2H4Ph) clusters, which show discrete absorption bands in the visible and near-infrared region at room temperature and with a decrease in temperature: (i) the optical absorption peaks become sharper with the appearance of vibronic structure, (ii) the absorption maximum is shifted to higher energies, and (iii) the oscillator strengths of transitions increased. Smaller temperature dependence of absorption is observed for plasmonic gold nanoparticles. The results of the band gap shifts are analyzed by incorporating electron-phonon interactions using the O'Donnell-Chen model. An average phonon energy of similar to 400 cm(-1) is determined, and is attributed to the phonons of semiring gold. The unique property of decreasing oscillator strength with increasing temperature is modeled in the Debye-Waller equation, which relates oscillator strength to the exciton-phonon interaction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available