4.8 Article

Beyond the Adiabatic Limit: Charge Photogeneration in Organic Photovoltaic Materials

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 1, Issue 15, Pages 2255-2263

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jz1005225

Keywords

-

Funding

  1. National Science Foundation [0846241]
  2. Henry Dreyfus New Faculty Awards Program
  3. 3M Corporation
  4. Direct For Mathematical & Physical Scien
  5. Division Of Chemistry [0846241] Funding Source: National Science Foundation

Ask authors/readers for more resources

Mounting evidence suggests that excess energy in charge transfer (CT) excitonic states facilitates efficient charge separation in organic solar cells. Experimental and theoretical studies have revealed that this excess energy may reside in phonon modes or in electronic coordinates of organic photovoltaic materials that are directly excited by the transition from Frenkel to CT excitons. Despite their strong Coulombic attraction, electron-hole pairs in hot CT excitons are able to undergo activationless separation because the rate of separation competes with thermalization of electronic and nuclear degrees of freedom. We argue that these observations indicate strong coupling of the dynamics of electronic and nuclear coordinates in organic photovoltaic materials. Thus, a nonadiabatic description is needed to properly understand the mechanism of charge photogeneration in organic solar cells. Such a description will support continuing efforts. toward the development of low-band-gap organic solar cells that efficiently. generate photocurrent with minimal energy losses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available