4.8 Article

Origami Multistability: From Single Vertices to Metasheets

Journal

PHYSICAL REVIEW LETTERS
Volume 114, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.114.055503

Keywords

-

Funding

  1. FOM
  2. NWO

Ask authors/readers for more resources

We show that the simplest building blocks of origami-based materials-rigid, degree-four vertices-are generically multistable. The existence of two distinct branches of folding motion emerging from the flat state suggests at least bistability, but we show how nonlinearities in the folding motions allow generic vertex geometries to have as many as five stable states. In special geometries with collinear folds and symmetry, more branches emerge leading to as many as six stable states. Tuning the fold energy parameters, we show how monostability is also possible. Finally, we show how to program the stability features of a single vertex into a periodic fold tessellation. The resulting metasheets provide a previously unanticipated functionality-tunable and switchable shape and size via multistability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available