4.6 Article

Revisiting Electrochemical Reduction of CO2 on Cu Electrode: Where Do We Stand about the Intermediates?

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 122, Issue 32, Pages 18528-18536

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.8b05348

Keywords

-

Funding

  1. Ministry of Science and Technology of China [2015DFG62610]
  2. Belt and Road Initiative by Chinese Academy of Sciences
  3. China Israel program of the Israel Ministry of Science, Technology and Space
  4. CAS-TWAS

Ask authors/readers for more resources

Electrochemical CO2 reduction on Cu electrode has attracted the attention of many researchers in the last decades, because of its potential to generate significant amounts of hydrocarbons at high reaction rates over sustained periods of time. As a result, substantial effort has been devoted to determining the unique catalytic performance of Cu and to elucidate the mechanism through which hydrocarbons are formed. Here we report new insights into CO2 reduction on Cu by electrochemical impedance spectroscopy (EIS) in terms of adsorption/desorption of the reduction intermediates. The potential dependence of charge transfer kinetics is discussed on the basis of EIS results. We revisit the mechanism of the formation of hydrocarbons, taking into account the pH adjacent to the electrode surface, adsorption of HCO3- and CO32-, and the role of active hydrogen. In addition to the enol-like intermediate, proposed previously, we proposed that *COOH center dot radicals, originating from the active involvement of HCO3- and/or CO32- upon reduction are key intermediates for the formation of a variety of C2 and C3 products. Thus, our results provide an additional crucial guideline for the design of future catalysts that can efficiently and selectively reduce CO2 into value-added chemicals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available