4.6 Article

How Growing Conditions and Interfacial Oxygen Affect the Final Morphology of MgO/Ag(100) Films

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 118, Issue 45, Pages 26091-26102

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp507718n

Keywords

-

Funding

  1. ICTP
  2. Italian MIUR [RBAP115AYN]

Ask authors/readers for more resources

In spite of the relevance of ultrathin MgO films for the study of model systems as well as for technological applications, great difficulties have been found so far in the growth of extended, well-ordered, ultrathin films. Combining scanning tunneling microscopy, X-ray photoemission spectroscopy, and high-resolution electron energy loss spectroscopy experiments with ab initio calculations, we demonstrate here that the structure of sub-monolayer MgO films grown on Ag(100) by reactive deposition is strongly affected not only by the growth conditions but also by after-growth treatments. The latter ones allow one to quench the thermodynamically most stable configuration at the deposition temperature or let the system evolve toward the low-temperature equilibrium state. Moreover, we give experimental and theoretical evidence of the accumulation of oxygen atoms at the MgO/Ag interface at the highest deposition temperature, which reduces the stress of the oxide film favoring the formation of extended terraces. The result is the possibility to tune the morphology of the films from small islands with corrugated borders, to perfectly square islands of larger size, to MgO terraces several tens of nanometers wide.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available