4.6 Article

Tunable Photodeposition of MoS2 onto a Composite of Reduced Graphene Oxide and CdS for Synergic Photocatalytic Hydrogen Generation

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 118, Issue 34, Pages 19842-19848

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp5054474

Keywords

-

Funding

  1. National Nature Science Foundation of China [21163012, 21366022]
  2. 973 project [2009CB220003]

Ask authors/readers for more resources

Recently, MoS2 as an excellent cocatalyst for hydrogen evolution reaction (HER) has attracted extensive attention. In this work, MoS2 was controllably loaded on the composite of reduced graphene oxide (rGO) and CdS (rGO/CdS) by a facile photoreduction method at different pHs. At low pH 7, MoS2 deposits on the surface of the CdS particles of the composite. However, at high pH 11, it loads on the exposed rGO. When MoS2 is on the rGO, the transfer of the photoexcited electron from CdS to rGO is compatible with the HER at MoS2 (synergic effect), whereas the transfer is incompatible with the HER when it is on the CdS (antisynergic effect). Moreover, the MoS2 deposited on the CdS decreases the photoabsorption and photoactivity of CdS, and the effect is avoided when MoS2 is on the rGO. The photocatalytic HER rate under the synergic condition is 4.3 times as high as that under antisynergic condition. This work would open a promising way to design and fabricate the efficient composite photocatalysts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available