4.6 Article

Molecular Split-Ring Resonators Based on Metal String Complexes

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 118, Issue 7, Pages 3766-3773

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp410619d

Keywords

-

Funding

  1. National Science Council, Taiwan
  2. Center of Theoretical Sciences of National Taiwan University

Ask authors/readers for more resources

Metal string complexes or extended metal atom chains (EMACs) belong to a family of molecules that consist of a linear chain of directly bonded metal atoms embraced helically by four multidentate organic ligands. These four organic ligands are usually made up of repeating pyridyl units, single-nitrogen-substituted heterocyclic annulenes, bridged by independent amido groups. Here, in this paper, we show that these heterocyclic annulenes are actually nanoscale molecular split-ring resonators (SRRs) that can exhibit simultaneous negative electric permittivity and magnetic permeability in the UV-vis region. Moreover, a monolayer of self-assembled EMACs is a periodic array of molecular SRRs which can be considered as a negative refractive index material. In the molecular scale, where the quantum-size effect is significant, we apply the tight-binding method to obtain the frequency-dependent permittivity and permeability of these molecular SRRs with their tensorial properties carefully considered.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available