4.6 Article

Liquid-Vapor Interface of Formic Acid Solutions in Salt Water: A Comparison of Macroscopic-Surface Tension and Microscopic in Situ X-ray Photoelectron Spectroscopy Measurements

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 118, Issue 50, Pages 29350-29360

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp5056039

Keywords

-

Funding

  1. L'Oreal Postdoctoral Fellowship
  2. Camille and Henry Dreyfus Foundation
  3. Trinity College
  4. ETH Postdoctoral Fellowship
  5. PSI FoKo
  6. SNF R'Equip [139139]

Ask authors/readers for more resources

The liquidvapor interface is difficult to access experimentally but is of interest from a theoretical and applied point of view and has particular importance in atmospheric aerosol chemistry. Here we examine the liquidvapor interface for mixtures of water, sodium chloride, and formic acid, an abundant chemical in the atmosphere. We compare the results of surface tension and X-ray photoelectron spectroscopy (XPS) measurements over a wide range of formic acid concentrations. Surface tension measurements provide a macroscopic characterization of solutions ranging from 0 to 3 M sodium chloride and from 0 to over 0.5 mole fraction formic acid. Sodium chloride was found to be a weak salting out agent for formic acid with surface excess depending only slightly on salt concentration. In situ XPS provides a complementary molecular level description about the liquidvapor interface. XPS measurements over an experimental probe depth of 51 angstrom gave the C 1s to O 1s ratio for both total oxygen and oxygen from water. XPS also provides detailed electronic structure information that is inaccessible by surface tension. Density functional theory calculations were performed to understand the observed shift in C 1s binding energies to lower values with increasing formic acid concentration. Part of the experimental -0.2 eV shift can be assigned to the solution composition changing from predominantly monomers of formic acid to a combination of monomers and dimers; however, the lack of an appropriate reference to calibrate the absolute BE scale at high formic acid mole fraction complicates the interpretation. Our data are consistent with surface tension measurements yielding a significantly more surface sensitive measurement than XPS due to the relatively weak propensity of formic acid for the interface. A simple model allowed us to replicate the XPS results under the assumption that the surface excess was contained in the top four angstroms of solution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available