4.6 Article

High-Efficiency Visible-Light-Driven Ag3PO4/AgI Photocatalysts: Z-Scheme Photocatalytic Mechanism for Their Enhanced Photocatalytic Activity

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 117, Issue 38, Pages 19346-19352

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp406508y

Keywords

-

Funding

  1. National Natural Science Foundation of China [21276088]

Ask authors/readers for more resources

High-efficiency Visible-light-driven Ag3PO4/AgI photocatalysts with different mole fractions of AgI have been synthesized via an in-situ anion-exchange method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and UV-vis diffuse reflectance spectroscopy (DRS). Under visible light (>420 nm), the Ag3PO4/AgI photocatalysts exhibit enhanced photocatalytic activity compared to pure Ag3PO4 or AgI for the degradation of methyl orange and phenol, and the highest activity is reached by the Ag3PO4/AgI hybrid photocatalyst with 20% of AgI. The quenching effects of different scavengers suggest that the reactive h(+) and O-2(center dot-) play the major role in the MO degradation. Detailed X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analysis reveals that Ag nanoparticles (NPs) form on the surface of Ag3PO4/AgI in the early stage of the photocatalytic oxidation process, thus leading to the transformation from Ag3PO4/AgI to Ag3PO4/AgI@Ag. The excellent photocatalytic activity of the Ag3PO4/AgI photocatalysts can be ascribed to the efficient separation of photogenerated electron hole pairs through a Z-scheme system composed of Ag3PO4, Ag, and AgI, in which the Ag nanoparticles acted as the charge transmission bridge. The Ag3PO4/AgI hybrid remains good photocatalytic activity after five cycling runs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available