4.6 Article

Graphene-Thickness-Dependent Graphene-Enhanced Raman Scattering

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 117, Issue 5, Pages 2369-2376

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp310564d

Keywords

-

Funding

  1. NSFC [21233001, 21129001, 51121091]
  2. MOST [2011CB932601]
  3. Beijing Municipal Natural Science Foundation [2132056]

Ask authors/readers for more resources

Graphene-enhanced Raman scattering (GERS), enhancing Raman signals on graphene surface, is an excellent approach to investigate the properties of graphene via the Raman enhancement effect. In the present study, we studied the graphene-thickness dependent GERS in detail. First, by keeping molecule density on few-layer graphene using vacuum thermal deposition method, GERS enhancement was found to be the same for all graphene layers (one to six layers). While adsorbing probe molecules by solution soaking the GERS enhancing factor was different on monolayer and bilayer graphene. By soaking in low concentration solutions, the GERS intensity on bilayer graphene was stronger than that on monolayer graphene, whereas by soaking under high concentration solutions, the GERS intensity difference was much less for that on monolayer and on bilayer. Molecule density, molecular configuration, and GERS enhancing factor are further discussed for molecules on monolayer and bilayer graphene. It was finally concluded that the abnormal graphene-thickness dependence of GERS between monolayer and bilayer graphene was attributed to the different enhancement for GERS on monolayer and bilayer graphene. Monolayer and bilayer graphene have different electronic structure and then doping effect of probe molecules, which shifts the Fermi level of graphenes differently. As a result, monolayer and bilayer graphene have different energy band matching with the probe molecules, yielding different chemical enhancement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available