4.6 Article

Molecular Dynamics Simulations of Shock Compressed Graphite

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 117, Issue 24, Pages 12778-12786

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp403568m

Keywords

-

Ask authors/readers for more resources

We present molecular dynamic simulations of the shock compression of graphite with the LCBOPII potential. The range of shock intensities covers the full range of available experimental data, including near-terapascal pressures. The results are in excellent agreement with the available DFT data and point to a graphite-diamond transition for shock pressures above 65 GPa, a value larger than the experimental data (20 to 50 GPa). The transition mechanism leads preferentially to hexagonal diamond through a diffusionless process but is submitted to irreversible regraphitization upon release: this result is in good agreement with the lack of highly ordered diamond observed in post-mortem experimental samples. Melting is found for shock pressures ranging from 200 to 300 GPa, close to the approximate LCBOPII diamond melting line. A good overall agreement is found between the calculated and experimental Hugoniot data up to 46% compression rate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available