4.6 Article

Brownian Dynamics Model of Excited-State Relaxation in Solutions of Conjugated Oligomers

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 117, Issue 23, Pages 12299-12306

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp400538g

Keywords

-

Funding

  1. National Science Foundation [0719350, 1027985]
  2. Division Of Chemistry
  3. Direct For Mathematical & Physical Scien [0719350, 1027985] Funding Source: National Science Foundation

Ask authors/readers for more resources

The effects of torsional degrees of freedom on the excited-state relaxation of conjugated oligomers in solution are explored computationally by coupling an exciton model of the oligomer to a Brownian dynamics model of the solvent. The exciton model assigns one torsional degree of freedom to each unit cell, or site, of the oligomer. A simple molecular mechanical form is used for the ground electronic state. The excitation energy is obtained assuming coherent coupling between sites that is proportional to the cosine of the difference in torsional angles. The solvent is characterized by a single parameter, which is equivalent to setting the rotational diffusion time, t(rot), of a single unit cell about the oligomer axis in the absence of any internal forces. The relaxation of long oligomers exhibits a fast component, with a time constant that is about 0.025t(rot) and a slow component that is about 0.15t(rot). As the oligomer length is decreased, the time constant for the slow component decreases such that the biexponential behavior smoothly diminishes below 10 unit cells, nearly disappearing by three unit cells. Comparisons of the exciton model, which includes self-trapping, with molecular mechanics and harmonic oscillator models, which do not include self-trapping, show similar behaviors. The double-exponential behavior therefore appears to be a general consequence of the participation of many torsional degrees of freedom in establishing the excitation energy. Because the time scales are relatively independent of the details of the torsional potential, experimental measurements of relaxation due to planarization report primarily on t(rot).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available