4.6 Article

Potential-Dependent Restructuring and Hysteresis in the Structural and Electronic Transformations of Pt/C, Au(Core)-Pt(Shell)/C, and Pd(Core)-Pt(Shell)/C Cathode Catalysts in Polymer Electrolyte Fuel Cells Characterized by in Situ X-ray Absorption Fine Structure

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 117, Issue 25, Pages 13094-13107

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp402438e

Keywords

-

Ask authors/readers for more resources

Potential-dependent transformations of surface structures, Pt oxidation states, and Pt-O bondings in Pt/C, Au(core)-Pt(shell)/C (denoted as Au@Pt/C), and Pd(core)-Pt(shell)/C (denoted as Pd@Pt/C) cathode catalysts in polymer electrolyte fuel cells (PEFCs) during the voltage-stepping processes were characterized by in situ (operando) X-ray absorption fine structure (XAFS). The active surface phase of the Au@Pt/C for oxygen reduction reaction (ORR) was suggested to be the Pt3Au alloy layer on Au core nanoparticles, while that of the Pd@Pt/C was the Pt atomic layer on Pd core nanoparticles. The surfaces of the Pt, Au@Pt and Pd@Pt nanoparticles were restructured and disordered at high potentials, which were induced by strong Pt-O bonds, resulting in hysteresis in the structural and electronic transformations in increasing and decreasing voltage operations. The potential-dependent restructuring, disordering, and hysteresis may be relevant to hindered Pt performance, Pt dissolution to the electrolyte, and degradation of the ORR activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available